首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   12篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   11篇
  2013年   6篇
  2012年   13篇
  2011年   7篇
  2010年   6篇
  2009年   11篇
  2008年   8篇
  2007年   4篇
  2006年   8篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  2000年   5篇
  1999年   6篇
  1998年   9篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有158条查询结果,搜索用时 578 毫秒
11.
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished.  相似文献   
12.
13.
Abstract Using a 50-year-old field experiment, we investigated the effects of the long-term land management practices of repeated burning and grazing on peatland vegetation and carbon dynamics (C). Plant community composition, C stocks in soils and vegetation, and C fluxes of CO2, CH4 and DOC, were measured over an 18-month period. We found that both burning and grazing reduced aboveground C stocks, and that burning reduced C stocks in the surface peat. Both burning and grazing strongly affected vegetation community composition, causing an increase in graminoids and a decrease in ericoid subshrubs and bryophytes relative to unburned and ungrazed controls; this effect was especially pronounced in burned treatments. Soil microbial properties were unaffected by grazing and showed minor responses to burning, in that the C:N ratio of the microbial biomass increased in burned relative to unburned treatments. Increases in the gross ecosystem CO2 fluxes of respiration and photosynthesis were observed in burned and grazed treatments relative to controls. Here, the greatest effects were seen in the burning treatment, where the mean increase in gross fluxes over the experimental period was greater than 40%. Increases in gross CO2 fluxes were greatest during the summer months, suggesting an interactive effect of land use and climate on ecosystem C cycling. Collectively, our results indicate that long-term management of peatland has marked effects on ecosystem C dynamics and CO2 flux, which are primarily related to changes in vegetation community structure.  相似文献   
14.
A temporal approach to linking aboveground and belowground ecology   总被引:3,自引:0,他引:3  
Ecologists are becoming increasingly aware of the role of aboveground-belowground relationships in controlling ecosystem processes and properties. Here, we review recent studies that show that relationships between aboveground and belowground communities operate over a hierarchy of temporal scales, ranging from days to seasons, to millennia, with differing consequences for ecosystem structure and function. We propose that a temporal framework is crucial to our understanding of the nature and ecological significance of relationships between aboveground and belowground communities.  相似文献   
15.
We documented brood parasitism by the poorly studied Large Hawk‐Cuckoo on a previously unknown host species, the Chinese Babax. Furthermore, we describe a new egg colour for the Large Hawk‐Cuckoo. The parasitism rate of Chinese Babax nests over 4 years was 6.9% (11 of 159 nests), with significant temporal variation. The Large Hawk‐Cuckoo laid immaculate white eggs that appeared non‐mimetic to the blue Babax eggs, an impression that was confirmed by avian visual modelling. Nevertheless, most Cuckoo eggs were accepted by the host, suggesting that this host–parasite system may be evolutionarily recent.  相似文献   
16.
Plant-soil feedbacks are widely recognized as playing a significant role in structuring plant communities through their effects on plant-plant interactions. However, the question of whether plant-soil feedbacks can be indirectly driven by other ecological agents, such as large herbivores, which are known to strongly modify plant community structure and soil properties, remains poorly explored. We tested in a glasshouse experiment how changes in soil properties resulting from long-term sheep grazing affect competitive interactions (intra- and inter-specific) of two graminoid species: Nardus stricta, which is typically abundant under high sheep grazing pressure in British mountain grasslands; and Eriophorum vaginatum, whose abundance is typically diminished under grazing. Both species were grown in monocultures and mixtures at different densities in soils taken from adjacent grazed and ungrazed mountain grassland in the Yorkshire Dales, northern England. Nardus stricta performed better (shoot and root biomass) when grown in grazing-conditioned soil, independent of whether or not it grew under inter-specific competition. Eriophorum vaginatum also grew better when planted in soil from the grazed site, but this occurred only when it did not experience inter-specific competition with N. stricta. This indicates that plant-soil feedback for E. vaginatum is dependent on the presence of an inter-specific competitor. A yield density model showed that indirect effects of grazing increased the intensity of intra-specific competition in both species in comparison with ungrazed-conditioned soil. However, indirect effects of grazing on the intensity of inter-specific competition were species-specific favouring N. stricta. We explain these asymmetric grazing-induced effects on competition on the basis of traits of the superior competitor and grazing effects on soil nutrients. Finally, we discuss the relevance of our findings for plant community dynamics in grazed, semi-natural grasslands.  相似文献   
17.
Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages between plants and microbes and reducing N availability.  相似文献   
18.
Food chain models have dominated empirical studies of trophic interactions in the past decades, and have lead to important insights into the factors that control ecological communities. Despite the importance of food chain models in instigating ecological investigations, many empirical studies still show a strong deviation from the dynamics that food chain models predict. We present a theoretical framework that explains some of the discrepancies by showing that trophic interactions are likely to be strongly influenced by the spatial configuration of consumers and their resources. Differences in the spatial scale at which consumers and their resources function lead to uncoupling of the population dynamics of the interacting species, and may explain overexploitation and depletion of resource populations. We discuss how changed land use, likely the most prominent future stress on natural systems, may affect food web dynamics by interfering with the scale of interaction between consumers and their resource.  相似文献   
19.
We tested the hypothesis that large herbivores manipulate their own food supply by modifying soil nutrient availability. This was investigated experimentally the impact of faeces on grasses, mosses and soil biological properties in tundra ecosystems. For this, we increased the density of reindeer Rangifer tarandus platyrhynchus faeces and studied the response of a tundra system on Spitsbergen to this single faecal addition treatment for four subsequent years. From the third year onwards faecal addition had unambiguously enhanced the standing crop of grasses, as evidenced by an increase in both shoot density and mass per shoot. Although reindeer grazing across experimental plots was positively related to the abundance of grasses in anyone year, the increase in grass abundance in fouled plots failed to result in greater grazing pressure in those plots. Faecal addition enhanced soil microbial biomass C and N, particularly under wet conditions where faecal decay rates were greatest, whilst grasses appeared to benefit from faeces under dry conditions. Whilst growth of grasses and soil microbial biomass were stimulated by faecal addition, the depth of the extensive moss layer that is typical of tundra ecosystems was significantly reduced in fouled plots four years after faecal addition. The greatest reduction in moss depth occurred where fouling increased soil microbial biomass most, suggesting that enhanced decomposition of moss by a more abundant microbial community may have caused the reduced moss layer depth in fouled plots. Our field experiment demonstrates that by the production of faeces alone, vertebrate herbivores greatly impact on both above‐ and belowground components of tundra ecosystems and in doing so manipulate their own food supply. Our findings verify the assertion that grazing is of fundamental importance to tundra ecosystem productivity, and support the hypothesis that herbivory is instrumental in promoting grasses whilst suppressing mosses. The widely observed inverse relationship between grass and moss abundance in the field may therefore reflect the long history of plant‐herbivore interactions in tundra ecosystems.  相似文献   
20.
Patterns of variation at nine enzyme loci were examined in 528 plants representing diploid and tetraploid populations of Parnassia palustris s. l. in Europe to assess genetic variation patterns and migration history. Half of the plants showed a unique multilocus phenotype and 75% of all phenotypes occurred only in Scandinavia. Diploid populations showed similar levels of genetic diversity as other widespread outbreeding species with animal-mediated pollination and F -statistics indicated excessive heterozygosity and low rates of gene flow among them. In spite of dramatic population histories caused by the ice ages, diploid populations have maintained the same genetic diversity in Scandinavia as in central and southern Europe. Northern populations have apparently been established through the gradual advance of genetically variable populations and patterns of variation at individual loci indicate different migration routes, from the south-south-west and the east-north-east, respectively. The data strongly support a repeated autoploid origin of the tetraploid cytotype which has been much more successful than the diploid progenitors in colonizing new land since the last ice age. High genetic diversity in Scandinavia has apparently been obtained by a combination of immigration of plants from different source areas and recurrent formation of autotetraploids from diploid progenitors.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 347−372.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号